## PAL - NTSC ENCODER

## **GENERAL DESCRIPTION**

The TDA2501 encodes two colour-difference signals R-Y and B-Y onto one subcarrier. Quadrature modulation allows the coding to be in accordance with either the PAL or NTSC system.

#### Features

- Generates two sinusoidal subcarriers with a relative phase of 90° (also accepts external subcarriers)
- Modulates the two subcarriers with the colour difference signals
- Inverts the output from one modulator on command of an external signal (as in case of PAL)
- Sums the output from the modulators to obtain a quadrature modulated output signal
- Clamps the output DC level to a reference voltage
- Divides the frequency of horizontal sync pulses by three so that the output level can be clamped and the balance of the two modulators sequentially controlled during the line-blanking minus burst-key period

#### **QUICK REFERENCE DATA**

| parameter                                                  | symbol              | min. | typ. | max, | unit |
|------------------------------------------------------------|---------------------|------|------|------|------|
| Supply voltage range (pin 6)                               | VP                  | 5.5  | 6.8  | 10   | V    |
| Supply current range (pin 6)                               | lp                  | 28   | 40   | 64   | mA   |
| Chrominance output voltage (pin 9)<br>(peak-to-peak value) | V <sub>9(p-p)</sub> | _    | _    | 1.4  | v    |
| Operating ambient temperature range                        | Tamb                | 25   | _    | + 70 | oC   |

#### PACKAGE OUTLINES

TDA2501 : 16-lead DIL; plastic (with internal heat spreader) (SOT38). TDA2501T: 16-lead mini-pack; plastic (SO16L; SOT162A).

# TDA2501



(1) R = 0.885 (2  $\pi$  fC); for PAL f = 4.433 619 MHz, R = 963  $\Omega$  and C = 33 pF.

Fig.1 Block diagram; also test and application diagram.

### DESCRIPTION

The colour difference signals B-Y and R-Y with a maximum amplitude of 1.4 volt are to be applied at pin 12 and pin 5. DC-coupling of the input signals is allowed if their DC levels are within specified limits from the DC level at pin 10 ( $V_{ref}$ ). The following table shows these limits as a function of supply voltage. The table also shows the limits of the reference voltage range as a function of the supply voltage.

| supply voltage<br>V <sub>6-16</sub> | input DC<br>(R-Y)<br>(B-Y) | ∨ <sub>5-16</sub><br>∨12-16<br>(∨) | reference voltage ▲<br>V10-16<br>(V) |      |      |
|-------------------------------------|----------------------------|------------------------------------|--------------------------------------|------|------|
| (V) m                               | min. (V)*                  | max. (V) * *                       | min                                  | typ. | max. |
| 5.5                                 | 2.4                        | 3.3                                | 2.3                                  | 3.0  | 3.5  |
| 6.0                                 | > V <sub>ref</sub> – 1.4 V | 3.8                                | 2.4                                  | 3.3  | 3.9  |
| 7.0                                 | > V <sub>ref</sub> – 1.4 V | 4.8                                | 2.6                                  | 4.0  | 4.7  |
| 8.0                                 | $> V_{ref} - 1.4 V$        | 5.8                                | 2.8                                  | 4.8  | 5.5  |
| 9.0                                 | $> V_{ref}$ 1.4 V          | 6.8                                | 3.0                                  | 5.5  | 6.3  |
| 10.0                                | $> V_{ref} - 1.4 V$        | 7.8                                | 3.2                                  | 6.3  | 7.1  |

\* Minimum 2.4 V.

\*\* At V<sub>S</sub> – 2.2 V.

▲ Minimum values at 0.2 V<sub>S</sub> + 1.2 V. Typical values without pull-up or pull-down resistor. Maximum values at 0.8 V<sub>S</sub> - 0.9 V.

The inputs (B-Y) and (R-Y) should be zero, independent of their (limited) DC-levels, during the lineblanking minus burst-key period (LB – BK). Clamping the output and correcting the out-of-balance of the modulators, is achieved by applying a HIGH level to pin 7 within the (LB–BK) period (e.g. line sync pulse).

Modulation at output:

 $V_8$  = LOW; output = sc x (B-Y) + sc' x (R-Y)  $V_8$  = HIGH; output = sc x (B-Y) - sc' x (R-Y) in which sc' = subcarrier sc = 90° phase-shifted subcarrier to sc' (sc lags).

The bandpass filter at the output suppresses the DC components of the (R-Y) + (B-Y) signal. Luminance (Y) is not processed by this circuit.

## Internal subcarrier

The internal subcarrier oscillator is crystal controlled. The oscillator generates a sinewave with low harmonic distortion and an amplitude of about 500 mV peak-to-peak. The amplitude can be changed if necessary with a current input at pin 1. The adjustment range is 0 to 800 mV, with a corresponding current range of + 250 to  $-150 \mu$ A.

#### Phase shift

To obtain a 90° phase-shifted carrier, two low impedance subcarrier outputs are provided, pins 2 and 15, the last being the inverse of the first. Between pins 2 and 15 an external RC combination must be used to obtain the desired 90° shift. The capacitor value must be limited to 33 pF to minimize subcarrier distortion.

The resistor required between pins 2 and 14 is 0.885 (2  $\pi$  fC).

#### External subcarrier

The (B-Y) and (R-Y) signals can also be multiplied with an external subcarrier. In this event the external subcarrier is connected to pin 1. For maximum input impedance at pin 1 V<sub>3</sub> = V<sub>16</sub> ( $Z_{mi} > 1400 \Omega$ ). The same RC network generates the 90° phase-shifted subcarrier. For the use of an externally generated subcarrier, applied at pin 14, the DC level must be the same as that of an RC-network generated one.

### RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

| parameter                           | symbol           | min.      | max.  | unit |
|-------------------------------------|------------------|-----------|-------|------|
| Supply voltage (pin 6 to pin 16)    | Vp               | _         | 13.2  | V    |
| Total power dissipation             | Ptot             | see Fig.2 |       | w    |
| Operating ambient temperature range | T <sub>amb</sub> | -25       | + 70  | oC   |
| Storage temperature range           | T <sub>stg</sub> | 55        | + 150 | ٥C   |





## CHARACTERISTICS

 $V_P = V_{6-10} = -V_{16-10} = 3 V$ ;  $T_{amb} = 25 \circ C$ ; unless otherwise specified

| parameter                                 | symbol               | min.    | typ. | max.       | unit                                    |
|-------------------------------------------|----------------------|---------|------|------------|-----------------------------------------|
| Supply                                    |                      |         |      |            |                                         |
| Single supply voltage                     | V6-16                | 5.5     | 6.8  | 10         | V                                       |
| Dual supply voltage                       |                      |         |      |            | •                                       |
| positive (pin 6)                          | V <sub>6-10</sub>    | 2.0     | 3.0  | 5.0        | V                                       |
| negative (pin 16)                         | -V16-10              | 2.3     | 3.0  | 5.0        | v                                       |
| Supply current (pin 10)                   | I <sub>10</sub>      | -1      | 0    | 3.5        | mA                                      |
| positive (pin 6)                          | 16                   | 28      | 40   | 64         | mA                                      |
| negative (pin 16)                         | <sup>-1</sup> 16     | 28      | 40   | 64         | mA                                      |
| Limitation DC level                       |                      |         |      |            |                                         |
| oscillator feedback                       | V <sub>1</sub>       | -30     | 0    | + 30       | mV                                      |
| Nominal amplitude input signal            |                      |         | Ŭ    | 1.30       | 1110                                    |
| (peak-to-peak value)                      |                      |         |      |            |                                         |
| pin 5                                     | V <sub>5(p-p)</sub>  | _       | 1    | 1.4        | V                                       |
| pin 12                                    | V <sub>12(p-p)</sub> | _       | 1    | 1.4        | V                                       |
| Input voltages (R-Y) and (B-Y)            | ·~(p·p)              |         |      | · <b>7</b> | v                                       |
| zero DC level                             |                      |         |      |            |                                         |
| pin 5                                     | V <sub>5</sub>       | 2.4     | 3.3  | 3.9        | V                                       |
| pin 12                                    | V <sub>12</sub>      | 2.4     | 3.3  | 3.9        | V                                       |
| Required level of sync input              |                      |         |      |            |                                         |
| HIGH                                      | V <sub>7</sub>       | 4       |      | VP         | V                                       |
| LOW                                       | V <sub>7</sub>       | _       | _    | V10        | V                                       |
| Required level of PAL pulse (H/2)         |                      |         |      | 10         | V                                       |
| HIGH                                      | V8                   | V10+0.8 | _    | VP         | V                                       |
| LOW                                       | V8                   | -VP     | _    | 0          | v                                       |
| Sync input current                        | -                    | •       |      | Ū          | , i i i i i i i i i i i i i i i i i i i |
| $V_7 = V_P + 1 V$                         | 17                   | _       | 4    | 15         | μA                                      |
| PAL input current (H/2)                   |                      |         |      |            | μ <b>Λ</b>                              |
| V8 = V10 + 0.8 V                          | 18                   |         | 1.5  | 5          | μA                                      |
| Chrominance output voltage swing          |                      |         | 1.5  |            | μΑ                                      |
| (R-Y) = (B-Y) = 1.4 V;                    |                      |         |      |            |                                         |
| subcarrier pulse = 0.5 V                  |                      |         |      |            |                                         |
| (peak-to-peak value)                      | V <sub>9(p-p)</sub>  | _       | _    | 1.4        | V                                       |
| Amplitude of suppressed subcarrier        | Vg                   | 0       | 7    | 16         | mV                                      |
| Input currents                            | U U                  | -       |      | 10         | 111V                                    |
| V4 = V10                                  | 14                   | 0       | 1.5  | 5          |                                         |
| $V_{11} = V_{10}$                         | 111                  | 0<br>0  | 1.5  | 5          | μΑ<br>μΑ                                |
| $V_{13} = V_{10}$                         | 113                  | 0       | 1.5  | 5          | μΑ                                      |
| $V_5 = V_{10}$                            | 15                   | 0       | 9    | 30         | μΑ                                      |
| $V_{12} = V_{10}$                         | I <sub>12</sub>      | 0       | 9    | 30         | μΑ                                      |
| V <sub>14</sub> = V <sub>16</sub> + 2.3 V | 114                  | _       | 6    | _          | μA                                      |
| Input impedance                           |                      |         |      |            |                                         |
| (R-Y)                                     | Z5                   | - 1     | 160  | _          | kΩ                                      |
| (B-Y)                                     | Z <sub>12</sub>      | -       | 160  | _          | kΩ                                      |