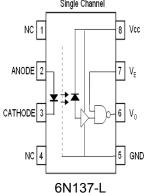
Property of Lite-on Only

6N137-L

High CMR, High Speed TTL Compatible Optocouplers

Dec.2008

Description


The 6N137-L consists of a high efficient AlGaAs Light Emitting Diode and a high speed optical detector. This design provides excellent AC and DC isolation between the input and output sides of the Optocoupler. The output of the optical detector features an open collector Schottky clamped transistor. The enable function allows the optical detector to be strobed. The internal shield ensures high common mode transient immunity. A guaranteed common mode transient immunity is up to 15,000V/µs.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$.

Features

- High speed 10MBd typical
- Guaranteed AC and DC performance over temperature -40°C ~ +85°C.
- LSTTL/TTL Compatible.
- Available in Dual-in-line, Wide lead spacing, Surface mounting package.
- Strobable output.
- UL, CSA, IEC/EN/DIN EN60747-5-2 Pending

Functional Diagram

Truth Table (Positive Logic)						
LED	ENABLE	OUT				
ON	Н	L				
OFF	Н	Н				
ON	L	I				
OFF	L	Н				
ON	NC	L				
OFF	NC	Ι				
A O 4 F b O it						

A 0.1µF bypass Capacitor must be connected between Pin8 and Pin5

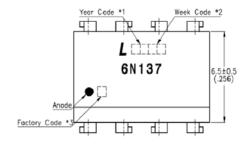
Application

- High Voltage Isolation
- Isolation in line receivers
- Ground loop elimination
- Feedback Element in Switching Mode Power Supplier
- High Speed Logic Ground Isolation TTL/TTL, TTL/CMOS, TTL/LSTTL
- Pulse transformer replacement
- Power transistor isolation in motor drives
- Interface between Microprocessor system, computer and their peripheral

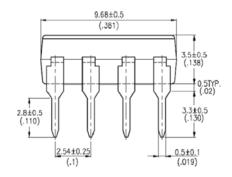
Part No.: 6N137-L series (Preliminary Version) Page: 1 of 16

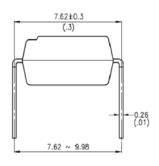
Property of Lite-on Only

Ordering Information


	Minimum CMR		Input-On Output	Output			
Part	Option	dV/dt (V/μs)	V _{CM} (V)	Current (mA)	Enable	Remarks	
	-L					Single Channel, DIP-8	
6N137	M-L	1,000	20	5	YES	Single Channel, Wide Lead Spacing	
	S-L					Single Channel, SMD-8	

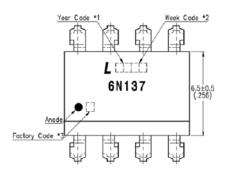
Part No.: 6N137-L series (Preliminary Version) Page: 2 of 16


Property of Lite-on Only

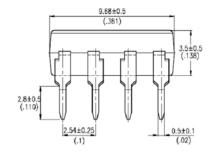

Package Dimensions

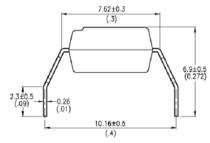
8-pin DIP Package (6N137-L)

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark (Z : Taiwan, Y : Thailand). Dimensions are in Millimeters and (Inches).



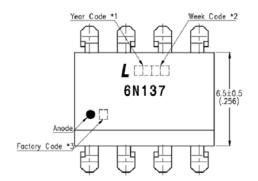
Part No.: 6N137-L series (Preliminary Version) Page: 3 of 16


Property of Lite-on Only


Package Dimensions

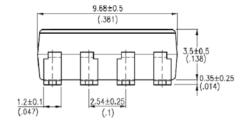
8-pin DIP Wide Lead Spacing Package (6N137M-L)

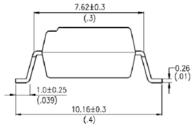
- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark (Z : Taiwan, Y : Thailand). Dimensions are in Millimeters and (Inches).



Part No.: 6N137-L series (Preliminary Version) Page: 4 of 16

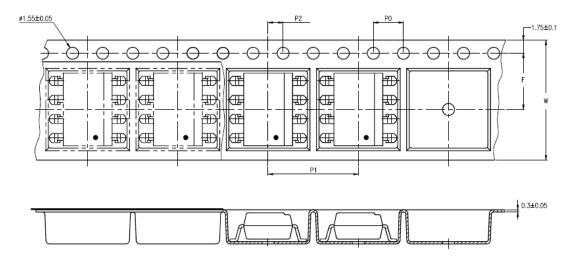
Property of Lite-on Only


Package Dimensions

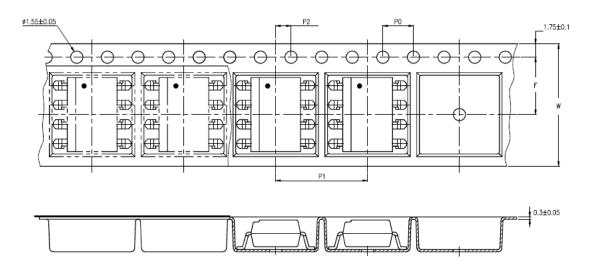

8-pin DIP Surface Mount Package (6N137S-L)

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark
 (Z: Taiwan, Y: Thailand).

 Dimensions are in Millimeters and (Inches).



Part No.: 6N137-L series (Preliminary Version) Page: 5 of 16

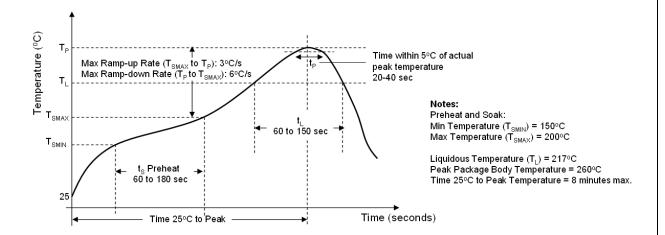

Property of Lite-on Only

Taping Dimensions

6N137S-TA-L

6N137S-TA1-L

Description	Symbol	Dimensions in millimeters (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P0	4 ± 0.1 (.15)
Distance of compartment	F P2	7.5 ± 0.1 (.295) 2 ± 0.1 (.079)
Distance of compartment to compartment	P1	12 ± 0.1 (.472)


Page: 6 of 16

Part No.: 6N137-L series (Preliminary Version)

BNS-OD-C131/A4

Property of Lite-on Only

Recommended Lead Free Reflow Profile

Part No.: 6N137-L series (Preliminary Version) Page: 7 of 16

Property of Lite-on Only

Absolute Maximum Ratings*1

Parameter	Symbol	Min	Max	Units	Note
Storage Temperature	T _{ST}	-55	125	°C	
Operating Temperature	T _A	-40	85	°C	
Isolation Voltage	V _{ISO}		5000	V_{RMS}	
Supply Voltage	V _{CC}		7	V	
Lead Solder Temperature * 2			260	°C	
Input					
Average Forward Input Current	I _F		20	mA	2
Reverse Input Voltage	V_R		5	V	
Input Power Dissipation	Pı		40	mW	
Enable Input Voltage	VE		V _{CC} +0.5	V	
Enable Input current	I _E		5	mA	
Output					
Output Collector Current	Io		50	mA	
Output Collector Voltage	Vo		7	V	
Output Collector Power Dissipation	Po		85	mW	

^{1.}Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

2.260°C for 10 seconds. Refer to Lead Free Reflow Profile.

Part No.: 6N137-L series (Preliminary Version) Page: 8 of 16

Property of Lite-on Only

Recommended Operating Conditions

Para	meter	Symbol	Min	Max	Units
Operating Temperature		T _A	-40	85	°C
Supply Voltage		V _{CC}	4.5	5.5	V
Low Level Input Current		I _{FL}	0	250	μΑ
High Level Input Current	6N137-L	I _{FH}	5	15	mA
Low Level Enable Voltage		V _{EL}	0	0.8	V
High Level Enable Voltage		V_{EH}	2	V_{CC}	V
Output Pull-up Resistor		R_L	330	4k	Ω
Fan Out (at R_L =1k Ω per chan	nel)	N		5	TTL Loads

Part No.: 6N137-L series (Preliminary Version) Page: 9 of 16

Property of Lite-on Only

Electrical Specifications

Parameters	Test Condition	Symbol	Min	Тур	Max	Units	Note		
Input									
Input Forward Voltage	I _F = 10mA	V _F		1.38	1.70	V			
Input Forward Voltage Temperature Coefficient	I _F = 10mA	ΔV _F / ΔΤ		-1.5		mV/ ^O C			
Input Reverse Voltage	I _R = 10μA	BV_R	5			V			
Input Threshold Current	$V_E = 2V, V_{CC} = 5.5V,$	I		1.35	5	mA			
Input Threshold Current	I _{OL} (sinking) = 13mA	I _{TH}		2 ⁽¹⁾	3	mA			
Input Capacitance	$f = 1MHz, V_F = 0V$	C _{IN}		34		pF			
Output									
High Level Supply Current	$V_E = 0.5V, V_{CC} = 5.5V,$ $I_F = 0mA$	I _{CCH}		7.4	10	mA			
Low Level Supply Current	$V_E = 0.5V, V_{CC} = 5.5V,$ $I_F = 10mA$	I _{CCL}		10	13	mA			
High Level Enable Current	V _E = 2V	I _{EH}		-0.6	-1.6	mA			
Low Level Enable Current	V _E = 0.5V	I _{EL}		-0.9	-1.6	mA			
High Level Enable Voltage		V _{EH}	2			V			
Low Level Enable Voltage		V _{EL}			0.8	V			
High Level Output Current	$V_E = 2V, V_{CC} = 5.5V,$ $V_O = 5.5V, I_F = 250\mu A$	I _{OH}			100	μA			
Low Level Output Voltage	V_E = 2V, V_{CC} = 5.5V, I_F = 5mA, I_{OL} (sinking) = 13mA	V _{OL}		0.25	0.60	V			

Specified over recommended temperature ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$) unless otherwise specified. Typical values applies to $V_{CC} = 5V$, $T_A = 25^{\circ}\text{C}$. See note 1.

Part No.: 6N137-L series (Preliminary Version) Page: 10 of 16

Property of Lite-on Only

Switching Specifications

Parameter	Test Condition	Symbol	Min	Тур	Max	Units	Note
Propagation Delay Time to High Output Level	$R_L = 350\Omega, C_L = 15pF$	t _{PLH}	25	40	100	ns	3
Propagation Delay Time to Low Output Level	$R_L = 350\Omega, C_L = 15pF$	t _{PHL}	25	27	100	ns	4
Pulse Width Distortion	$R_L = 350\Omega, C_L = 15pF$	t _{PLH} - t _{PHL}		12		ns	
Propagation Delay Skew	$R_L = 350\Omega, C_L = 15pF$	t _{PSK}					
Output Rise Time (10 to 90%)	$R_L = 350\Omega, C_L = 15pF$	t _r		20		ns	
Output Fall Time (90 to 10%)	$R_L = 350\Omega, C_L = 15pF$	t _f		6.6		ns	
Propagation Delay Time of Enable from $V_{\rm EH}$ to $V_{\rm EL}$	$R_L = 350\Omega, C_L = 15pF, V_{EL} = 0V, V_{EH} = 3V$	t _{ELH}		28		ns	5
Propagation Delay Time of Enable from V _{EL} to V _{EH}	$R_L = 350\Omega, C_L = 15pF,$ $V_{EL} = 0V, V_{EH} = 3V$	t _{EHL}		12		ns	6
Logic High Common Mode Transient Immunity	$ V_{CM} = 20V, V_{CC} = 5V,$ $I_F = 0mA, V_{O(MIN)} = 2V,$ $R_L = 350\Omega, T_A = 25^{\circ}C$	CM _H	1,000			V/µs	7,9
Logic Low Common Mode Transient Immunity	$ V_{CM} = 20V, V_{CC} = 5V,$ $I_F = 7.5 \text{mA}, V_{O(MIN)} = 0V,$ $R_L = 350\Omega, T_A = 25^{\circ}\text{C}$	CM _L	1,000			V/µs	8,9

Specified over recommended temperature ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$), $V_{CC} = 5\text{V}$, $I_F = 7.5\text{mA}$ unless otherwise specified. Typical values applies to $V_{CC} = 5\text{V}$, $T_A = 25^{\circ}\text{C}$.

Part No.: 6N137-L series (Preliminary Version) Page: 11 of 16

Property of Lite-on Only

Isolation Characteristics

Parameter	Test Condition	Symbol	Min	Тур	Max	Unit s	Note
Input-Output Insulation Leakage Current	45% RH, t = 5s, V _{I-O} = 3kV DC, T _A = 25°C	I _{I-O}			1.0	μΑ	10,11
Withstand Insulation Test Voltage	RH ≤ 50%, t = 1min, T _A = 25°C	V _{ISO}	5000			٧	10,11,1 2
Input-Output Resistance	V _{I-O} = 500V DC	R _{I-O}		6.5x10 ¹¹		Ω	10
Input-Output Capacitance	f = 1MHz, T _A = 25°C	C _{I-O}		1.0		pF	10

Specified over recommended temperature ($T_A = -40^{\circ}C$ to $+85^{\circ}C$) unless otherwise specified. Typical values applies to $T_A = 25^{\circ}C$

Notes

- 1. A $0.1\mu F$ or bigger bypass capacitor for V_{CC} is needed as shown in Fig.1
- 2. Peaking driving circuit may be used to speed up the LED. The peak drive current of LED may go up to 50mA and maximum pulse width 50ns, as long as average current doesn't exceed 20mA.
- 3. t_{PLH} (propagation delay) is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
- 4. t_{PHL} (propagation delay) is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
- 5. The t_{ELH} enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge of the output pulse.
- 6. The t_{EHL} enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge of the output pulse.
- 7. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VO > 2.0 V).
- 8. CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VO < 0.8 V).
- 9. No external pull up is required for a high logic state on the enable input. If the enable pin is not used, tying it to $V_{\rm CC}$.
- 10. Device is considered a two-terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.
- 11. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage 3000 V rms for one second (leakage current less than 5 uA). This test is performed before the 100% production test for partial discharge
- 12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for one second (leakage current less than 5 uA). This test is performed before the 100% production test for partial discharge

Part No.: 6N137-L series (Preliminary Version) Page: 12 of 16

Property of Lite-on Only

Switching Time Test Circuit

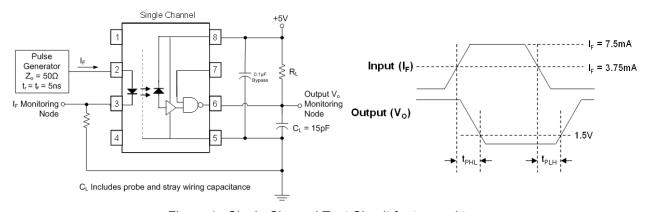


Figure 1: Single Channel Test Circuit for tph and tp H

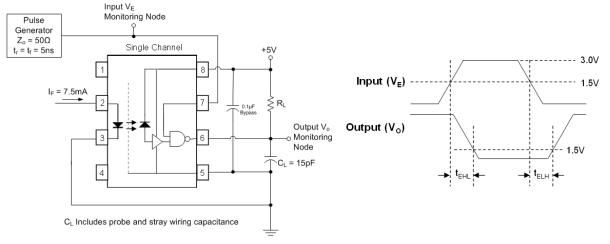
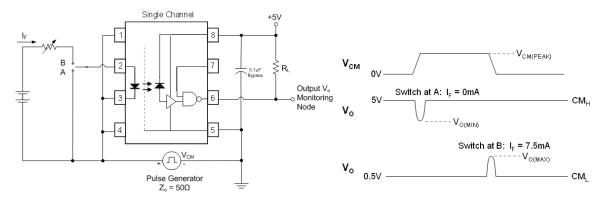
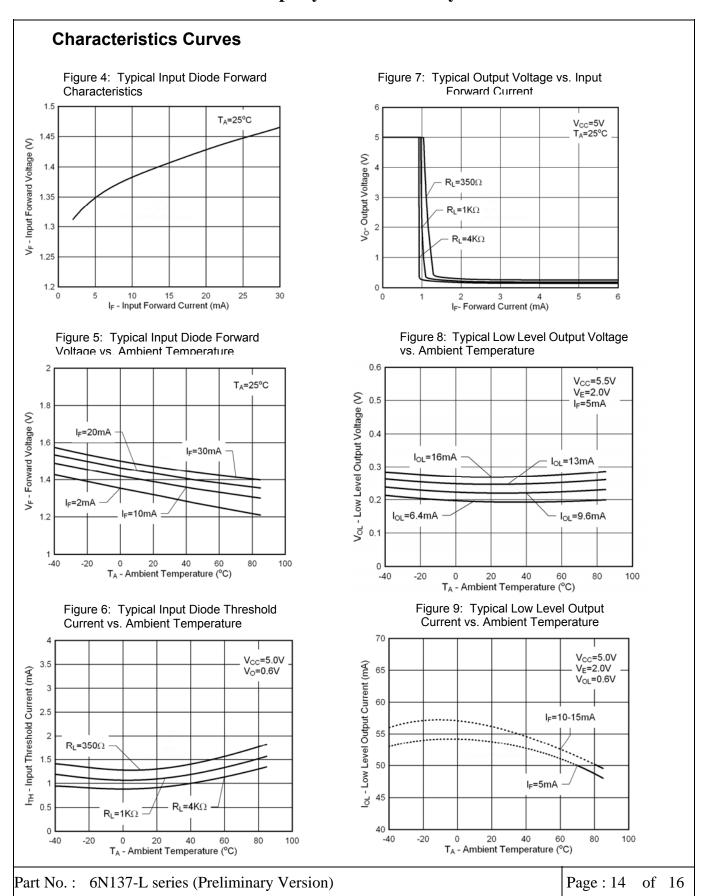
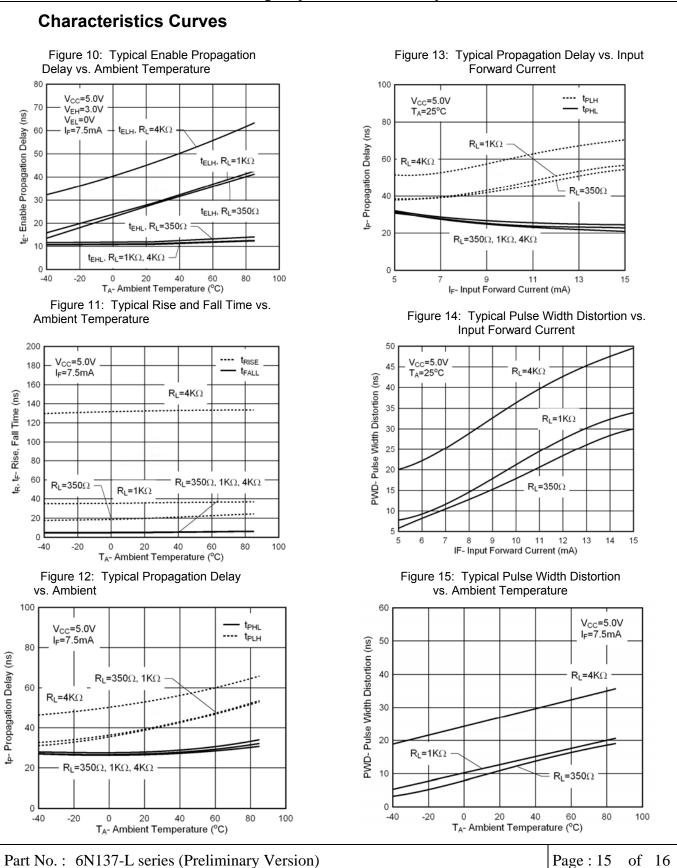


Figure 2: Single Channel Test Circuit for t_{EHL} and t_{ELH}


Figure 3: Single Channel Test Circuit for Common Mode Transient Immunity

Part No.: 6N137-L series (Preliminary Version) Page: 13 of 16

Property of Lite-on Only

Property of Lite-on Only

Property of Lite-on Only

1 Toperty of Lite-on Omy	
Notice	
Specifications of the products displayed herein are subject to change without notice	ce.
The products shown in this publication are designed for the general use in electro as office automation equipment, communications devices, audio/visual e instrumentation and application. For equipment/devices where high reliability or sa as space applications, nuclear power control equipment, medical equipment, etc sales representatives.	equipment, electrical afety is required, such
art No.: 6N137-L series (Preliminary Version)	Page: 16 of 1
ALL INC. CONT. 27-1, SELIES LETERIBILIALV VEISION)	TEASE TO OF L